β-glucans and cholesterol (Review) (2024)

1. World Health Organization . Cardiovascular disease. 2016. [Google Scholar]

2. World Health Organization . Obesity and overweight fact sheet. 2017. [Google Scholar]

3. World Health Organization . Obesity and overweight fact sheet. 2016. [Google Scholar]

4. CDC, National Center for Chronic Disease Prevention and Health Promotion and Division for Heart Disease and Stroke Prevention . Heart Disease Facts and Statistics. CDC; [Google Scholar]

5. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349:1498–1504. doi:10.1016/S0140-6736(96)07492-2. [PubMed] [CrossRef] [Google Scholar]

6. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: A meta-analysis. Am Heart J. 2008;156:13–22. doi:10.1016/j.ahj.2008.02.014. [PubMed] [CrossRef] [Google Scholar]

7. Clark JM, Brancati FL. The challenge of obesity-related chronic diseases. J Gen Intern Med. 2000;15:828–829. doi:10.1046/j.1525-1497.2000.00923.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Oreopoulos A, Ezekowitz JA, McAlister FA, Kalantar-Zadeh K, Fonarow GC, Norris CM, Johnson JA, Padwal RS. Association between direct measures of body composition and prognostic factors in chronic heart failure. Mayo Clin Proc. 2010;85:609–617. doi:10.4065/mcp.2010.0103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Bose KS, Gupta SK, Vyas P. Adipocytokine levels in genetically high risk for type 2 diabetes in the Indian population: A cross-sectional study. Exp Diabetes Res. 2012;2012:386524. doi:10.1155/2012/386524. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Olson NC, Callas PW, Hanley AJ, Festa A, Haffner SM, Wagenknecht LE, Tracy RP. Circulating levels of TNF-α are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: The insulin resistance atherosclerosis study. J Clin Endocrinol Metab. 2012;97:1032–1040. doi:10.1210/jc.2011-2155. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143. doi:10.1161/hc0902.104353. [PubMed] [CrossRef] [Google Scholar]

12. Emanuela F, Grazia M, Marco de R, Maria Paola L, Giorgio F, Marco B. Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012;2012:476380. doi:10.1155/2012/476380. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Harland JI. Food combinations for cholesterol lowering. Nutr Res Rev. 2012;25:249–266. doi:10.1017/S0954422412000170. [PubMed] [CrossRef] [Google Scholar]

14. Johnston TP, Korolenko TA, Pirro M, Sahebkar A. Preventing cardiovascular heart disease: Promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res. 2017;120:219–225. doi:10.1016/j.phrs.2017.04.008. [PubMed] [CrossRef] [Google Scholar]

15. Chatzizisis YS, Koskinas KC, Misirli G, Vaklavas C, Hatzitolios A, Giannoglou GD. Risk factors and drug interactions predisposing to statin-induced myopathy: Implications for risk assessment, prevention and treatment. Drug Saf. 2010;33:171–187. doi:10.2165/11319380-000000000-00000. [PubMed] [CrossRef] [Google Scholar]

16. Camerino GM, Musumeci O, Conte E, Musaraj K, Fonzino A, Barca E, Marino M, Rodolico C, Tricarico D, Camerino C, et al. Risk of myopathy in patients in therapy with statins: Identification of biological markers in a pilot study. Front Pharmacol. 2017;8:500. doi:10.3389/fphar.2017.00500. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Caparros-Martin JA, Lareu RR, Ramsay JP, Peplies J, Reen FJ, Headlam HA, Ward NC, Croft KD, Newsholme P, Hughes JD, et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome. 2017;5:95. doi:10.1186/s40168-017-0312-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Verhaegh BP, de Vries F, Masclee AA, Keshavarzian A, de Boer A, Souverein PC, Pierik MJ, Jonkers DM. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors. Aliment Pharmacol Ther. 2016;43:1004–1013. doi:10.1111/apt.13583. [PubMed] [CrossRef] [Google Scholar]

19. O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13:691–706. doi:10.1038/nrgastro.2016.165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Peters U, Sinha R, Chatterjee N, Subar AF, Ziegler RG, Kulldorff M, Bresalier R, Weissfeld JL, Flood A, Schatzkin A, et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet. 2003;361:1491–1495. doi:10.1016/S0140-6736(03)13173-X. [PubMed] [CrossRef] [Google Scholar]

21. Mao QQ, Lin YW, Chen H, Qin J, Zheng XY, Xu X, Xie LP. Dietary fiber intake is inversely associated with risk of pancreatic cancer: A meta-analysis. Asia Pac J Clin Nutr. 2017;26:89–96. [PubMed] [Google Scholar]

22. Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in hut microbiota defensive players for inflammation and atherosclerosis. J Atheroscler Thromb. 2017;24:660–672. doi:10.5551/jat.RV17006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Hernandez-Rodas MC, Valenzuela R, Videla LA. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int J Mol Sci. 2015;16:25168–25198. doi:10.3390/ijms161025168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Burton-Freeman B, Liyanage D, Rahman S, Edirisinghe I. Ratios of soluble and insoluble dietary fibers on satiety and energy intake in overweight pre- and postmenopausal women. Nutr Healthy Aging. 2017;4:157–168. doi:10.3233/NHA-160018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Adam CL, Thomson LM, Williams PA, Ross AW. Soluble fermentable dietary fibre (Pectin) decreases caloric intake, adiposity and lipidaemia in high-fat diet-induced obese rats. PLoS One. 2015;10:e0140392. doi:10.1371/journal.pone.0140392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Torcello-Gómez A, Fernández Fraguas C, Ridout MJ, Woodward NC, Wilde PJ, Foster TJ. Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food Funct. 2015;6:730–739. doi:10.1039/C5FO00099H. [PubMed] [CrossRef] [Google Scholar]

27. Meneses ME, Martinez-Carrera D, Torres N, Sánchez-Tapia M, Aguilar-López M, Morales P, Sobal M, Bernabé T, Escudero H, Granados-Portillo O, Tovar AR. Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PLoS One. 2016;11:e0159631. doi:10.1371/journal.pone.0159631. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Hung TV, Suzuki T. Dietary fermentable fiber reduces intestinal barrier defects and inflammation in colitic mice. J Nutr. 2016;146:1970–1979. doi:10.3945/jn.116.232538. [PubMed] [CrossRef] [Google Scholar]

29. Zhong Y, Marungruang N, Fak F, Nyman M. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br J Nutr. 2015;113:1558–1570. doi:10.1017/S0007114515000793. [PubMed] [CrossRef] [Google Scholar]

30. Luo Y, Zhang L, Li H, Smidt H, Wright AG, Zhang K, Ding X, Zeng Q, Bai S, Wang J, et al. Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice. Front Microbiol. 2017;8:966. doi:10.3389/fmicb.2017.00966. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Winglee K, Fodor AA. Intrinsic association between diet and the gut microbiome: Current evidence. Nutr Diet Suppl. 2015;7:69–76. [PMC free article] [PubMed] [Google Scholar]

32. Jakobsdottir G, Xu J, Molin G, Ahrné S, Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One. 2013;8:e80476. doi:10.1371/journal.pone.0080476. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, Horak V, Saieh M. Immunostimulatory properties and anti-tumor activities of glucans (Review) Int J Oncol. 2013;43:357–364. doi:10.3892/ijo.2013.1974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Chanput W, Reitsma M, Kleinjans L, Mes JJ, Savelkoul HF, Wichers HJ. β-Glucans are involved in immune-modulation of THP-1 macrophages. Mol Nutr Food Res. 2012;56:822–833. doi:10.1002/mnfr.201100715. [PubMed] [CrossRef] [Google Scholar]

35. Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomized-controlled trials. Br J Nutr. 2016;116:1369–1382. doi:10.1017/S000711451600341X. [PubMed] [CrossRef] [Google Scholar]

36. Caz V, Gil-Ramirez A, Largo C, Tabernero M, Santamaría M, Martín-Hernández R, Marín FR, Reglero G, Soler-Rivas C. Modulation of cholesterol-related gene expression by dietary fiber fractions from edible mushrooms. J Agric Food Chem. 2015;63:7371–7380. doi:10.1021/acs.jafc.5b02942. [PubMed] [CrossRef] [Google Scholar]

37. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep. 2011;28:457–466. doi:10.1039/c0np00018c. [PubMed] [CrossRef] [Google Scholar]

38. Anderson JW, Baird P, Davis RH, Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL. Health benefits of dietary fiber. Nutr Rev. 2009;67:188–205. doi:10.1111/j.1753-4887.2009.00189.x. [PubMed] [CrossRef] [Google Scholar]

39. Van Horn L, McCoin M, Kris-Etherton PM, Burke F, Carson JA, Champagne CM, Karmally W, Sikand G. The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc. 2008;108:287–331. doi:10.1016/j.jada.2007.10.050. [PubMed] [CrossRef] [Google Scholar]

40. Vetvicka V, Vetvickova J. Effects of yeast-derived beta-glucans on blood cholesterol and macrophage functionality. J Immunotoxicol. 2009;6:30–35. doi:10.1080/15476910802604317. [PubMed] [CrossRef] [Google Scholar]

41. de Groot A, Luyken R, Pikaar NA. Cholesterol-lowering effect of rolled oats. Lancet. 1963;2:303–304. doi:10.1016/S0140-6736(63)90210-1. [PubMed] [CrossRef] [Google Scholar]

42. Czop JK. The role of beta-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic activation. Pathol Immunopathol Res. 1986;5:286–296. doi:10.1159/000157022. [PubMed] [CrossRef] [Google Scholar]

43. Estrada A, Yun CH, Van Kessel A, Li B, Hauta S, Laarveld B. Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol Immunol. 1997;41:991–998. doi:10.1111/j.1348-0421.1997.tb01959.x. [PubMed] [CrossRef] [Google Scholar]

44. Torrence PF. Biological response modifiers: New approaches to disease intervention. Academic Press; Orlando: 1985. p. 397. [Google Scholar]

45. Novak M, Vetvicka V. Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J Immunotoxicol. 2008;5:47–57. doi:10.1080/15476910802019045. [PubMed] [CrossRef] [Google Scholar]

46. Vetvicka V, Vetvickova J. β1,3-Glucan: Silver bullet or hot air. Open Glycoscience. 2010;3:1–6. [Google Scholar]

47. Vetvicka V, Vetvickova J. Comparison of immunological effects of commercially available β-glucans: Part III. Int J Clin Pathol. 2006;2 doi:10.15406/icpjl.2016.02.00046. [CrossRef] [Google Scholar]

48. Würsch P, Pi-Sunyer FX. The role of viscous soluble fiber in the metabolic control of diabetes. A review with special emphasis on cereals rich in beta-glucan. Diabetes Care. 1997;20:1774–1780. doi:10.2337/diacare.20.11.1774. [PubMed] [CrossRef] [Google Scholar]

49. Mosikanon K, Arthan D, Kettawan A, Tungtrongchitr R, Prangthip P. Yeast β-glucan modulates inflammation and waist circumference in overweight and obese subjects. J Diet Suppl. 2017;14:173–185. doi:10.1080/19390211.2016.1207005. [PubMed] [CrossRef] [Google Scholar]

50. Browder W, Williams D, Lucore P, Pretus H, Jones E, McNamee R. Effect of enhanced macrophage function on early wound healing. Surgery. 1988;104:224–230. [PubMed] [Google Scholar]

51. Vetvicka V, Vetvickova J. Anti-stress action of an orally-given combination of resveratrol, β-glucan, and vitamin C. Molecules. 2014;19:13724–13734. doi:10.3390/molecules190913724. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Vetvicka V, Vetvickova J. β-glucan attenuates chronic fatigue syndrome in murine model. J Nat Sci. 2015;1:e112. [Google Scholar]

53. Sima P, Vannucci L, Vetvicka V. Glucans and cancer: Historical perspective. Cancer Translational Med. 2015;1:209–214. doi:10.4103/2395-3977.172860. [CrossRef] [Google Scholar]

54. Barbieri A, Quagliariello V, Del Vecchio V, Falco M, Luciano A, Amruthraj NJ, Nasti G, Ottaiano A, Berretta M, Iaffaioli RV, Arra C. Anticancer and anti-inflammatory properties of gano-derma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients. 2017;9:pii:E210. doi:10.3390/nu9030210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Richter J, Kral V, Svozil V, Rajnohova DL, Pohorska JI, Vetvicka V. Effects of transfer point glucan #300 supplementation on children exposed to passive smoking-placebo-driven double-blind clinical trials. J Nutr Health. 2014;1:105. [Google Scholar]

56. Vetvicka V, Richter J, Svozil V, Rajnohová Dobiášová L, Král V. Placebo-driven clinical trials of yeast-derived β-(1-3) glucan in children with chronic respiratory problems. Ann Transl Med. 2013;1:26. [PMC free article] [PubMed] [Google Scholar]

57. Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature. 2001;413:36–37. doi:10.1038/35092620. [PubMed] [CrossRef] [Google Scholar]

58. Stambach NS, Taylor ME. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology. 2003;13:401–410. doi:10.1093/glycob/cwg045. [PubMed] [CrossRef] [Google Scholar]

59. Allendorf DJ, Ostroff GR, BAran JT, et al. BTR 2003: Unified Science & Technology for Reducing Biological Threats & Counterin Terrorism. Albuquesrque: University of New Mexico; 2003. Oral WGP beta glucan treatment accelerates myeloid recovery and survival after irradiation wxposure; pp. 104–113. [Google Scholar]

60. Ross GD, Vĕtvicka V. CR3 (CD11b. CD18): A phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Cell Exp Immunol. 1993;92:181–184. doi:10.1111/j.1365-2249.1993.tb03377.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Xia Y, Vetvicka V, Yan J, Hanikyrová M, Mayadas T, Ross GD. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol. 1999;162:2281–2290. [PubMed] [Google Scholar]

62. Legentil L, Paris F, Ballet C, Trouvelot S, Daire X, Vetvicka V, Ferrières V. Molecular interactions of β-(1→>3)-glucans with their receptors. Molecules. 2015;20:9745–9766. doi:10.3390/molecules20069745. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Williams DL, Ha T, Li C, Laffan J, Kalbfleisch J, Browder W. Inhibition of LPS-induced NFkappaB activation by a glucan ligand involves down-regulation of IKKbeta kinase activity and altered phosphorylation and degradation of IkappaBalpha. Shock. 2000;13:446–452. doi:10.1097/00024382-200006000-00005. [PubMed] [CrossRef] [Google Scholar]

64. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–517. doi:10.1016/j.immuni.2005.03.004. [PubMed] [CrossRef] [Google Scholar]

65. Elcombe SE, Naqvi S, Van Den Bosch MW, MacKenzie KF, Cianfanelli F, Brown GD, Arthur JS. Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers. PLoS One. 2013;8:e60086. doi:10.1371/journal.pone.0060086. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Větvička V. (Beta)-glucans as natural biological response modifiers. Nova Science Publishers Inc; New York: 2013. [Google Scholar]

67. Orth M, Bellosta S. Cholesterol: Its regulation and role in central nervous system disorders. Cholesterol. 2012;2012:292598. doi:10.1155/2012/292598. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Li T, Chiang JY. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009;2009:501739. doi:10.1155/2009/501739. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C, et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med. 2017;23:839–849. doi:10.1038/nm.4357. [PubMed] [CrossRef] [Google Scholar]

70. Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31:159–165. doi:10.1097/MOG.0000000000000156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am. 1984;251:58–66. doi:10.1038/scientificamerican1184-58. [PubMed] [CrossRef] [Google Scholar]

72. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174. doi:10.1146/annurev.biochem.72.121801.161712. [PubMed] [CrossRef] [Google Scholar]

73. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap-bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488–498. doi:10.1038/nrendo.2014.60. [PubMed] [CrossRef] [Google Scholar]

74. Gibbons GF, Wiggins D, Brown AM, Hebbachi AM. Synthesis and function of hepatic very-low-density-lipoprotein. Biochem Soc Trans. 2004;32:59–64. doi:10.1042/bst0320059. [PubMed] [CrossRef] [Google Scholar]

75. Davidson WS, Hilliard GM. The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipo-protein particles. J Biol Chem. 2003;278:27199–27207. doi:10.1074/jbc.M302764200. [PubMed] [CrossRef] [Google Scholar]

76. de Oliveira Alvim R, Mourao-Junior CA, Magalhaes GL, de Oliveira CM, Krieger JE, Mill JG, Pereira AC. Non-HDL cholesterol is a good predictor of the risk of incfeased arterial stiffness in postmenopausal women in an urban Brazilian population. Clinics (Sao Paulo) 2017;72:106–110. doi:10.6061/clinics/2017(02)07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR, Jr, Bangdiwala S, Tyroler HA. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79:8–15. doi:10.1161/01.CIR.79.1.8. [PubMed] [CrossRef] [Google Scholar]

78. Srinivasan SR, Myers L, Berenson GS. Distribution and correlates of non-high-density lipoprotein cholesterol in children: The Bogalusa heart study. Pediatrics. 2002;110:e29. doi:10.1542/peds.110.3.e29. [PubMed] [CrossRef] [Google Scholar]

79. Hoenig MR. Implications of the obesity epidemic for lipid-lowering therapy: Non-HDL cholesterol should replace LDL cholesterol as the primary therapeutic target. Vasc Health Risk Manag. 2008;4:143–156. doi:10.2147/VHRM.S2364. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. The National Cholesterol Education Program. https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf.

81. Masson D, Koseki M, Ishibashi M, Larson CJ, Miller SG, King BD, Tall AR. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol. 2009;29:2054–2060. doi:10.1161/ATVBAHA.109.191320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: A review. J Lipid Res. 2014;55:2007–2021. doi:10.1194/jlr.R051367. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Parathasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol. 2010;610:403–417. doi:10.1007/978-1-60327-029-8_24. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Besler C, Lüscher TF, Landmesser U. Molecular mechanisms of vascular effects of high-density lipoprotein: Alternations in cardiovascular disease. EMBO Mol Med. 2012;4:251–268. doi:10.1002/emmm.201200224. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Stary HC. The sequence of cell and matrix changes in athero-sclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J. 1990;11(Suppl E):S3–S19. doi:10.1093/eurheartj/11.suppl_E.3. [PubMed] [CrossRef] [Google Scholar]

86. Sullivan MP, Cerda JJ, Robbins FL, Burgin CW, Beatty RJ. The gerbil, hamster, and guinea pig as rodent models for hyper-lipidemia. Lab Anim Sci. 1993;43:575–578. [PubMed] [Google Scholar]

87. Sima A, Stancu C, Constantinescu E, Ologeanu L, Simionescu M. The hyperlipemic hamster-a model for testing the anti-atherogenic effect of amlodipine. J Cell Mol Med. 2001;5:153–162. doi:10.1111/j.1582-4934.2001.tb00148.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Ohmura H, f*ckushima Y, Mizuno A, Niwa K, Kobayashi Y, Ebina T, Kimura K, Ishibashi S, Daida H. Research Committee on Primary Hyperlipidemia of the Ministry of Health and Welfare of Japan: Estimated prevalence of heterozygous familial hypercholesterolemia in patients with acute coronary syndrome. Int Heart J. 2017;58:88–94. doi:10.1536/ihj.16-188. [PubMed] [CrossRef] [Google Scholar]

89. Rosenson RS, Brewer HB, Jr, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13:48–60. doi:10.1038/nrcardio.2015.124. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13:368–380. doi:10.1038/nrneph.2017.51. [PubMed] [CrossRef] [Google Scholar]

91. Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14:79–87. doi:10.1038/nrcardio.2016.183. [PubMed] [CrossRef] [Google Scholar]

92. Babicek K, Cehová I, Simon RR, Harwood M, Cox DJ. Toxicological assesment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem Toxicol. 2007;45:1719–1730. doi:10.1016/j.fct.2007.03.013. [PubMed] [CrossRef] [Google Scholar]

93. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am J Clin Nutr. 1999;69:30–42. [PubMed] [Google Scholar]

94. Phillips GO, Cui SW. An introduction: Evolution and finalisation of the regulatory definition of dietary fibre. Food Hydrocolloids. 2011;25:139–143. doi:10.1016/j.foodhyd.2010.04.011. [CrossRef] [Google Scholar]

95. Slavin JL. Dietary fiber and body weight. Nutrition. 2005;21:411, 418. doi:10.1016/j.nut.2004.08.018. [PubMed] [CrossRef] [Google Scholar]

96. Cheung PCK. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci Human Wellness. 2013;2:162–166. doi:10.1016/j.fshw.2013.08.001. [CrossRef] [Google Scholar]

97. Jenkins DJ, Kendall CW, Axelsen M, Augustin LS, Vuksan V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr Opin Lipidol. 2000;11:49–56. doi:10.1097/00041433-200002000-00008. [PubMed] [CrossRef] [Google Scholar]

98. Gee JM, Blackburn NA, Johnson IT. The influence of guar gum on intestinal cholesterol transport in the rat. Br J Nutr. 1983;50:215–224. doi:10.1079/BJN19830091. [PubMed] [CrossRef] [Google Scholar]

99. Chau CF, Huang YL. Effects of the insoluble fiber derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Mol Nutr Food Res. 2005;49:786–790. doi:10.1002/mnfr.200500060. [PubMed] [CrossRef] [Google Scholar]

100. Cho IJ, Lee C, Ha TY. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. In rats fed a high-cholesterol diet. J Agric Food Chem. 2007;55:1592–1596. doi:10.1021/jf0622127. [PubMed] [CrossRef] [Google Scholar]

101. Zacherl C, Eisner P, Engel KH. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem. 2011;126:423–428. doi:10.1016/j.foodchem.2010.10.113. [CrossRef] [Google Scholar]

102. Aoki S, Iwai A, Kawata K, Muramatsu D, Uchiyama H, Okabe M, Ikesue M, Maeda N, Uede T. Oral administration of the Aureobasidium pullulans-derived β-glucan effectively prevents the development of high fat diet-induced fatty liver in mice. Sci Rep. 2015;5:10457. doi:10.1038/srep10457. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–1078. doi:10.1152/physrev.00011.2008. [PubMed] [CrossRef] [Google Scholar]

104. Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism. 2012;61:1058–1066. doi:10.1016/j.metabol.2012.01.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci USA. 2004;101:6999–7004. doi:10.1073/pnas.0306266101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: Ready for prime time. Nutr Clin Pract. 2006;21:351–366. doi:10.1177/0115426506021004351. [PubMed] [CrossRef] [Google Scholar]

107. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–2340. doi:10.1194/jlr.R036012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. doi:10.1186/1756-8722-2-25. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801:1175–1183. doi:10.1016/j.bbalip.2010.07.007. [PubMed] [CrossRef] [Google Scholar]

110. Wismar R, Brix S, Frøkiaer H, Laerke HN. Dietary fibers as immunoregulatory compounds in health and disease. Ann NY Acad Sci. 2010;1190:70–85. doi:10.1111/j.1749-6632.2009.05256.x. [PubMed] [CrossRef] [Google Scholar]

111. Vangaveti V, Shashidhar V, Jarrod G, Baune BT, Kennedy RL. Free fatty acid receptors: Emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab. 2010;1:165–175. doi:10.1177/2042018810381066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Warnberg J, Gomez-Martinez S, Romeo J, Diaz LE, Marcos A. Nutrition, inflammation, and cognitive function. Ann N Y Acad Sci. 2009;1153:164–175. doi:10.1111/j.1749-6632.2008.03985.x. [PubMed] [CrossRef] [Google Scholar]

113. Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G, Manno C, Zito A, Gesualdo M, Ciccone MM, et al. Beta-glucans supplementation associates with reduction in P-Cresyl sulfate levels and improved endo-thelial vascular reactivity in healthy individuals. PLoS One. 2017;12:e0169635. doi:10.1371/journal.pone.0169635. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Mansbach CM, II, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol. 2007;293:G645–G650. doi:10.1152/ajpgi.00299.2007. [PubMed] [CrossRef] [Google Scholar]

115. Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: Cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293:G519–G524. doi:10.1152/ajpgi.00189.2007. [PubMed] [CrossRef] [Google Scholar]

116. Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–340. doi:10.1016/S0092-8674(00)80213-5. [PubMed] [CrossRef] [Google Scholar]

117. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501:177–181. doi:10.1016/j.abb.2010.06.004. [PubMed] [CrossRef] [Google Scholar]

118. Drozdowski LA, Reimer RA, Temelli F, Bell RC, Vasanthan T, Thomson AB. Beta-glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats. J Nutr Biochem. 2010;21:695–701. doi:10.1016/j.jnutbio.2009.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Chen J, Huang XF. The effects of diets enriched in beta-glucans on blood lipoprotein concentrations. J Clin Lipidol. 2009;3:154–158. doi:10.1016/j.jacl.2009.04.054. [PubMed] [CrossRef] [Google Scholar]

120. Rondanelli M, Opizzi A, Monteferrario F, Klersy C, Cazzola R, Cestaro B. Beta-glucan- or rice bran-enriched foods: A comparative crossover clinical trial on lipidic pattern in mildly hypercholesterolemic men. Eur J Clin Nutr. 2011;65:864–871. doi:10.1038/ejcn.2011.48. [PubMed] [CrossRef] [Google Scholar]

121. Wolever TM, Tosh SM, Gibbs AL, Brand-Miller J, Duncan AM, Hart V, Lamarche B, Thomson BA, Duss R, Wood PJ. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. Am J Clin Nutr. 2010;92:723–732. doi:10.3945/ajcn.2010.29174. [PubMed] [CrossRef] [Google Scholar]

122. Johnson IT, Gee JM. Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut. 1981;22:398–403. doi:10.1136/gut.22.5.398. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Kirby RW, Anderson JW, Sieling B, Rees ED, Chen WJ, Miller RE, Kay RM. Oat-bran intake selectively lowers serum low-density lipoprotein cholesterol concentrations of hypercholesterolemic men. Am J Clin Nutr. 1981;34:824–829. [PubMed] [Google Scholar]

124. Fadel JG, Newman RK, Newman CW, Barnes AE. Hypocholesterolemic effects of beta-glucans in different barley diets fed to broiler chicks. Nutr Rep Int. 1987;35:1049–1058. [Google Scholar]

125. Li J, Kaneko T, Qin LQ, Wang J, Wang Y, Sato A. Long-term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: Comparison among barley, rice, and cornstarch. Metabolism. 2003;52:1206–1210. doi:10.1016/S0026-0495(03)00159-8. [PubMed] [CrossRef] [Google Scholar]

126. Sima A, Bulla A, Simionescu N. Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol. 1990;22:1–16. [PubMed] [Google Scholar]

127. Lim MK, Ku SK, Choi JS, Kim JW. Effect of polycan, a β-glucan originating from Aureobasidium, on a high-fat diet-induced hyperlipemic hamster model. Exp Ther Med. 2015;9:1369–1378. doi:10.3892/etm.2015.2238. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, Hess R, Ostergren K, Haworth J, Knutson N. Beta-glucan fractions from barley and oats are similarly anti-atherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr. 2003;133:468–475. doi:10.1093/jn/133.2.468. [PubMed] [CrossRef] [Google Scholar]

129. Wilson TA, Nicolosi RJ, Delaney B, Chadwell K, Moolchandani V, Kotyla T, Ponduru S, Zheng GH, Hess R, Knutson N, et al. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J Nutr. 2004;134:2617–2622. doi:10.1093/jn/134.10.2617. [PubMed] [CrossRef] [Google Scholar]

130. Wu YS, Ho SY, Nan FH, Chen SN. Ganoderma lucidum beta 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol diet. BMC Complement Altern Med. 2016;16:500. doi:10.1186/s12906-016-1476-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Kusmiati, Dhewantara FX. Cholesterol-lowering effect of beta glucan extracted from Saccharomyces cerevisiae in rats. Sci Pharm. 2016;84:153–165. doi:10.3797/scipharm.ISP.2015.07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Tong LT, Zhong K, Liu L, Zhou X, Qiu J, Zhou S. Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters. Food Chem. 2015;169:344–349. doi:10.1016/j.foodchem.2014.07.157. [PubMed] [CrossRef] [Google Scholar]

133. Vetvicka V, Vetvickova J. Physiological effects of different types of beta-glucan. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151:225–231. doi:10.5507/bp.2007.038. [PubMed] [CrossRef] [Google Scholar]

134. Malkki Y. Oat fiber. In: Cho S, Dreher ML, editors. Food Science and Technology: Handbook of Dietary Fiber. M. Dekker; New York: 2001. pp. 497–512. [Google Scholar]

135. Veniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe−/− and Ldlr−/− mice. Arterioscler Thromb Vasc Biol. 2001;21:1567–1570. doi:10.1161/hq1001.097780. [PubMed] [CrossRef] [Google Scholar]

136. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Apolipoprotein E knock-out and knock-in mice: Atherosclerosis, metabolic syndrome, and beyond. J Lipid Res. 2009;50(Suppl):S178–S182. doi:10.1194/jlr.R800070-JLR200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Anderson JW, Story L, Sieling B, Chen WJ, Petro MS, Story J. Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am J Clin Nutr. 1984;40:1146–1155. doi:10.1093/ajcn/40.6.1146. [PubMed] [CrossRef] [Google Scholar]

138. Anderson JW, Gustafson NJ. Hypocholesterolemic effects of oat and bean products. Am J Clin Nutr. 1988;48(Suppl 3):S749–S753. doi:10.1093/ajcn/48.3.749. [PubMed] [CrossRef] [Google Scholar]

139. Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr. 1994;48:465–474. [PubMed] [Google Scholar]

140. Newman RK, Lewis SE, Newman CW, Boik RJ, Ramage RT. Hypocholesterolemic effect of barley foods on healthy men. Nutr Rep Int. 1989;39:749–760. [Google Scholar]

141. McIntosh GH, Whyte J, McArthur R, Nestel PJ. Barley and wheat foods: Influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr. 1991;53:1205–1209. doi:10.1093/ajcn/53.5.1205. [PubMed] [CrossRef] [Google Scholar]

142. Lupton JR, Robinson MC, Morin JL. Cholesterol-lowering effect of barley bran flour and oil. J Am Diet Assoc. 1994;94:65–70. doi:10.1016/0002-8223(94)92044-3. [PubMed] [CrossRef] [Google Scholar]

143. Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Anderson H. Oat beta-glucan increases bile excretion and a fiber rich barley fracton increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–1251. doi:10.1093/ajcn/62.6.1245. [PubMed] [CrossRef] [Google Scholar]

144. Bell S, Goldman VM, Bistrian BR, Arnold AH, Ostroff G, Forse RA. Effect of beta-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr. 1999;39:189–202. doi:10.1080/10408399908500493. [PubMed] [CrossRef] [Google Scholar]

145. Li J, Kaneko T, Qin LQ, Wang J, Wang Y. Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition. 2003;19:926–929. doi:10.1016/S0899-9007(03)00182-5. [PubMed] [CrossRef] [Google Scholar]

146. Behall KM, Scholfield DJ, Hallfrisch J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am J Clin Nutr. 2004;80:1185–1193. doi:10.1093/ajcn/80.5.1185. [PubMed] [CrossRef] [Google Scholar]

147. Behall KM, Scholfield DJ, Hallfrisch J. Lipids significantly reduced by diets containing barley in moderately hypercholes-terolemic men. J Am Coll Nutr. 2004;23:55–62. doi:10.1080/07315724.2004.10719343. [PubMed] [CrossRef] [Google Scholar]

148. Keenan JM, Goulson M, Shamliyan T, Knutson N, Kolberg L, Curry L. The effects of concentrated barley beta-glucan on blood lipids in a population of hypercholesterolaemic men and women. Br J Nutr. 2007;97:1162–1168. doi:10.1017/S0007114507682968. [PubMed] [CrossRef] [Google Scholar]

149. Shimizu C, Kihara M, Aoe S, Araki S, Ito K, Hayashi K, Watari J, Sakata Y, Ikegami S. Effect of high beta-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men-a randomized, double-blinded, placebo-controlled trial. Plant Foods Hum Nutr. 2008;63:21–25. doi:10.1007/s11130-007-0064-6. [PubMed] [CrossRef] [Google Scholar]

150. Sundberg B. Cholesterol lowering effects of a barley fibre flake product. Agro Food Industry Hi-Tech. 2008;19:14–17. [Google Scholar]

151. Zhu X, Sun X, Wang M, Zhang C, Cao Y, Mo G, Liang J, Zhu S. Quantitative assessment of the effects of beta-glucan consumption on serum lipid profile and glucose level in hypercholesterolemic subjects. Nutr Metab Cardiovasc Dis. 2015;25:714–723. doi:10.1016/j.numecd.2015.04.008. [PubMed] [CrossRef] [Google Scholar]

152. Keogh GF, Cooper GJ, Mulvey TB, McArdle BH, Coles GD, Monro JA, Poppitt SD. Randomized controlled crossover study of the effect of a highly beta-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterol-emic men. Am J Clin Nutr. 2003;78:711–718. doi:10.1093/ajcn/78.4.711. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Biörklund M, van Rees A, Mensink RP, Onning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: A randomised dose-controlled trial. Eur J Clin Nutr 5. 2005;9:1272–1281. doi:10.1038/sj.ejcn.1602240. [PubMed] [CrossRef] [Google Scholar]

154. Ibrügger S, Kristensen M, Poulsen MW, Mikkelsen MS, Ejsing J, Jespersen BM, Dragsted LO, Engelsen SB, Bügel S. Extracted oat and barley β-glucans do not affect cholesterol metabolism in young healthy adults. J Nutr. 2013;143:1579–1585. doi:10.3945/jn.112.173054. [PubMed] [CrossRef] [Google Scholar]

155. Talati R, Baker WL, Pabilonia MS, White CM, Coleman CI. The effects of barley-derived soluble fiber on serum lipids. Ann Fam Med. 2009;7:157–163. doi:10.1370/afm.917. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. AbuMweis SS, Jew S, Ames NP. β-glucan from barley and its lipid-lowering capacity: A meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 2010;64:1472–1480. doi:10.1038/ejcn.2010.178. [PubMed] [CrossRef] [Google Scholar]

157. Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GB, McPherson R, Francis GA, Poirier P, Lau DC, Grover S, et al. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151–167. doi:10.1016/j.cjca.2012.11.032. [PubMed] [CrossRef] [Google Scholar]

158. Newman RK, Newman CW. Genetics and Nutrient Composition. John Wiley & Sons; Hoboken, NJ: 2008. Barley for food and health: Science, technology, and products; pp. 56–94. [Google Scholar]

159. Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. A systematic review and meta-analysis of randomized controlled trials of the effect of barley β-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reductioni-iv. Eur J Clin Nutr. 2016;70:1340. doi:10.1038/ejcn.2016.129. [PubMed] [CrossRef] [Google Scholar]

160. Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr Res. 2008;28:335–342. doi:10.1016/j.nutres.2008.03.010. [PubMed] [CrossRef] [Google Scholar]

161. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol. 2008;118:7–13. doi:10.1016/j.jep.2008.02.030. [PubMed] [CrossRef] [Google Scholar]

162. Bays HE, Evans JL, Maki KC, Evans M, Maquet V, Cooper R, Anderson JW. Chitin-glucan fiber effects on oxidized low-density lipoprotein: A randomized controlled trial. Eur J Clin Nutr. 2013;67:2–7. doi:10.1038/ejcn.2012.121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Serra-Majem L, Roman B, Estruch R. Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutr Rev. 2006;64(Suppl):S27–S47. doi:10.1111/j.1753-4887.2006.tb00232.x. [PubMed] [CrossRef] [Google Scholar]

164. Wang Y, Harding SV, Eck P, Thandapilly SJ, Gamel TH, Abdel-Aal el-SM, Crow GH, Tosh SM, Jones PJ, Ames NP. High-molecular-weight β-glucan decreases serum cholesterol differentially based on the CYP7A1 rs3808607 polymorphism in mildly hypercholesterolemic adults. J Nutr. 2016;146:720–727. doi:10.3945/jn.115.223206. [PubMed] [CrossRef] [Google Scholar]

β-glucans and cholesterol (Review) (2024)

References

Top Articles
Latest Posts
Article information

Author: Prof. An Powlowski

Last Updated:

Views: 5952

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Prof. An Powlowski

Birthday: 1992-09-29

Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

Phone: +26417467956738

Job: District Marketing Strategist

Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.