Vitamin D Deficiency and Oral Health: A Comprehensive Review (2024)

1. Borel P., Caillaud D., Cano N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2015;55:1193–1205. doi:10.1080/10408398.2012.688897. [PubMed] [CrossRef] [Google Scholar]

2. Holick M.F., Chen T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008;87:1080–1086. doi:10.1093/ajcn/87.4.1080S. [PubMed] [CrossRef] [Google Scholar]

3. Turck D., Bresson J.L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., McArdle H.J., Naska A., et al. Update of the tolerable upper intake level for vitamin D for infants. EFSA J. 2018;16:1–118. [PMC free article] [PubMed] [Google Scholar]

4. Wilson L.R., Tripkovic L., Hart K.H., Lanham-New S.A. Vitamin D deficiency as a public health issue: Using Vitamin D2 or Vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017;76:1–8. doi:10.1017/S0029665117000349. [PubMed] [CrossRef] [Google Scholar]

5. Jones G. The discovery and synthesis of the nutritional factor vitamin D. Int. J. Paleopathol. 2018;23:96–99. doi:10.1016/j.ijpp.2018.01.002. [PubMed] [CrossRef] [Google Scholar]

6. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi:10.1056/NEJMra070553. [PubMed] [CrossRef] [Google Scholar]

7. Lanham-New S.A., Wilson L.R. Vitamin D—Has the new dawn for dietary recommendations arrived? Nutr. Bull. 2016;41:2–5. doi:10.1111/nbu.12185. [PubMed] [CrossRef] [Google Scholar]

8. Girgis C.M., Clifton-Bligh R.J., Hamrick M.W., Holick M.F., Gunton J.E. The roles of vitamin D in skeletal muscle: Form, function, and metabolism. Endocr. Rev. 2013;34:33–83. doi:10.1210/er.2012-1012. [PubMed] [CrossRef] [Google Scholar]

9. Morris H.A., Anderson P.H. Autocrine and paracrine actions of vitamin d. Clin. Biochem. Rev. 2010;31:129–138. [PMC free article] [PubMed] [Google Scholar]

10. Bikle D.D. Vitamin D and the immune system: Role in protection against bacterial infection. Curr. Opin. Nephrol. Hypertens. 2008;17:348–352. doi:10.1097/MNH.0b013e3282ff64a3. [PubMed] [CrossRef] [Google Scholar]

11. Bikle D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014;21:319–329. doi:10.1016/j.chembiol.2013.12.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Jeon S.M., Shin E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018;50:20. doi:10.1038/s12276-018-0038-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Kongsbak M., Levring T.B., Geisler C., von Essen M.R. The vitamin D receptor and T cell function. Front. Immunol. 2013;4:1–10. doi:10.3389/fimmu.2013.00148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Richard C.L., Farach-Carson M.C., Rohe B., Nemere I., Meckling K.A. Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp. Cell Res. 2010;316:695–703. doi:10.1016/j.yexcr.2009.12.015. [PubMed] [CrossRef] [Google Scholar]

15. McKenna M.J., Murray B. Vitamin D Deficiency. Springer; New York, NY, USA: 2014. [Google Scholar]

16. Hilger J., Friedel A., Herr R., Rausch T., Roos F., Wahl D.A., Pierroz D.D., Weber P., Hoffmann K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014;111:23–45. doi:10.1017/S0007114513001840. [PubMed] [CrossRef] [Google Scholar]

17. de Boer I.H. Chronic Kidney Disease, Dialysis, and Transplantation. Volume 357. Elsevier Saunders; Philadelphia, PA, USA: 2010. Vitamin D deficiency; pp. 115–127. [Google Scholar]

18. Mogire R.M., Mutua A., Kimita W., Kamau A., Bejon P., Pettifor J.M., Adeyemo A., Williams T.N., Atkinson S.H. Prevalence of vitamin D deficiency in Africa: A systematic review and meta-analysis. Lancet Glob. Health. 2020;8:e134–e142. doi:10.1016/S2214-109X(19)30457-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Aguiar M., Andronis L., Pallan M., Högler W., Frew E. The economic case for prevention of population vitamin D deficiency: A modelling study using data from England and Wales. Eur. J. Clin. Nutr. 2019;74:825–833. doi:10.1038/s41430-019-0486-x. [PubMed] [CrossRef] [Google Scholar]

20. Alonso M.A., Mantecón L., Santos F. Vitamin D deficiency in children: A challenging diagnosis! Pediatr. Res. 2019;85:596–601. doi:10.1038/s41390-019-0289-8. [PubMed] [CrossRef] [Google Scholar]

21. White J.H. Vitamin D and human health: More than just bone. Nat. Rev. Endocrinol. 2013;9:623. doi:10.1038/nrendo.2013.75-c1. [PubMed] [CrossRef] [Google Scholar]

22. Fathi N., Ahmadian E., Shahi S., Roshangar L., Khan H., Kouhsoltani M., Maleki Dizaj S., Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed. Pharmacother. 2019;109:391–401. doi:10.1016/j.biopha.2018.10.102. [PubMed] [CrossRef] [Google Scholar]

23. Gröber U., Kisters K. Influence of drugs on vitamin D and calcium metabolism. Dermatoendocrinology. 2012;4:158–166. doi:10.4161/derm.20731. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Chapple I.L.C., Bouchard P., Cagetti M.G., Campus G., Carra M.C., Cocco F., Nibali L., Hujoel P., Laine M.L., Lingstrom P., et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J. Clin. Periodontol. 2017;44:S39–S51. doi:10.1111/jcpe.12685. [PubMed] [CrossRef] [Google Scholar]

25. Uwitonze A.M., Murererehe J., Ineza M.C., Harelimana E.I., Nsabimana U., Uwambaye P., Gatarayiha A., Haq A., Razzaque M.S. Effects of vitamin D status on oral health. J. Steroid Biochem. Mol. Biol. 2018;175:190–194. doi:10.1016/j.jsbmb.2017.01.020. [PubMed] [CrossRef] [Google Scholar]

26. Peres M.A., Macpherson L.M.D., Weyant R.J., Daly B., Venturelli R., Mathur M.R., Listl S., Celeste R.K., Guarnizo-Herreño C.C., Kearns C., et al. Oral diseases: A global public health challenge. Lancet. 2019;394:249–260. doi:10.1016/S0140-6736(19)31146-8. [PubMed] [CrossRef] [Google Scholar]

27. Watt R.G., Daly B., Allison P., Macpherson L.M.D., Venturelli R., Listl S., Weyant R.J., Mathur M.R., Guarnizo-Herreño C.C., Celeste R.K., et al. Ending the neglect of global oral health: Time for radical action. Lancet. 2019;394:261–272. doi:10.1016/S0140-6736(19)31133-X. [PubMed] [CrossRef] [Google Scholar]

28. Hujoel P.P. Vitamin D and dental caries in controlled clinical trials: Systematic review and meta-analysis. Nutr. Rev. 2013;71:88–97. doi:10.1111/j.1753-4887.2012.00544.x. [PubMed] [CrossRef] [Google Scholar]

29. Schroth R.J., Levi J.A., Sellers E.A., Friel J., Kliewer E., Moffatt M.E.K. Vitamin D status of children with severe early childhood caries: A case-control study. BMC Pediatr. 2013;13:174. doi:10.1186/1471-2431-13-174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Dietrich T., Joshipura K.J., Dawson-hughes B., Bischoff-ferrari H.A. Association between serum concentrations of 25-hydroxyvitamin D 3 and periodontal disease in the US population 1–3. Am. J. Clin. Nutr. 2004;80:108–113. [PubMed] [Google Scholar]

31. Scardina G.A., Messina P. Good oral health and diet. J. Biomed. Biotechnol. 2012;2012:1–8. doi:10.1155/2012/720692. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. White J.H. Vitamin D metabolism and signaling in the immune system. Rev. Endocr. Metab. Disord. 2012;13:21–29. doi:10.1007/s11154-011-9195-z. [PubMed] [CrossRef] [Google Scholar]

33. Ganesh M.L., Saravana Pandian K. Acceleration of tooth movement during orthodontic treatment-A frontier in orthodontics. J. Pharm. Sci. Res. 2017;9:741–744. [Google Scholar]

34. Martínez-Maestre M.A., González-Cejudo C., MacHuca G., Torrejón R., Castelo-Branco C. Periodontitis and osteoporosis: A systematic review. Climacteric. 2010;13:523–529. doi:10.3109/13697137.2010.500749. [PubMed] [CrossRef] [Google Scholar]

35. Foster B.L., Nociti F.H., Somerman M.J. The rachitic tooth. Endocr. Rev. 2014;35:1–34. doi:10.1210/er.2013-1009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. D’Ortenzio L., Kahlon B., Peaco*ck T., Salahuddin H., Brickley M. The rachitic tooth: Refining the use of interglobular dentine in diagnosing vitamin D deficiency. Int. J. Paleopathol. 2018;22:101–108. doi:10.1016/j.ijpp.2018.07.001. [PubMed] [CrossRef] [Google Scholar]

37. Allgrove J. Physiology of calcium, phosphate and magnesium. Endocr. Dev. 2009;16:8–31. [PubMed] [Google Scholar]

38. Bergwitz C., Jüppner H. Regulation of phosphate homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010;61:91–104. doi:10.1146/annurev.med.051308.111339. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Pike J.W., Meyer M.B. The Vitamin D receptor: New paradigms for the regulation of gene expression by 1,25-Dihydroxyvitamin D 3. Rheum. Dis. Clin. N. Am. 2012;38:13–27. doi:10.1016/j.rdc.2012.03.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Haussler M.R., Jurutka P.W., Mizwicki M., Norman A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH) 2 vitamin D 3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:543–559. doi:10.1016/j.beem.2011.05.010. [PubMed] [CrossRef] [Google Scholar]

41. Pike J.W., Meyer M.B., Bishop K.A. Regulation of target gene expression by the vitamin D receptor—An update on mechanisms. Rev. Endocr. Metab. Disord. 2012;13:45–55. doi:10.1007/s11154-011-9198-9. [PubMed] [CrossRef] [Google Scholar]

42. Rosen C.J., Adams J.S., Bikle D.D., Black D.M., Demay M.B., Manson J.A.E., Murad M.H., Kovacs C.S. The nonskeletal effects of vitamin D: An endocrine society scientific statement. Endocr. Rev. 2012;33:456–492. doi:10.1210/er.2012-1000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Haussler M.R., Haussler C.A., Whitfield G.K., Hsieh J.C., Thompson P.D., Barthel T.K., Bartik L., Egan J.B., Wu Y., Kubicek J.L., et al. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “ Fountain of Youth” to mediate healthful aging. J. Steroid Biochem. Mol. Biol. 2010;121:88–97. doi:10.1016/j.jsbmb.2010.03.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Slavkin H.C., Hu C.C., Sakakura Y., Diekwisch T., Chai Y., Mayo M., Bringas P., Simmer J., Mak G., Sasano Y., et al. Gene expression, signal transduction and tissue-specific biomineralization during mammalian tooth development. Crit. Rev. Eukaryot. Gene Expr. 1992;2:315–329. [PubMed] [Google Scholar]

45. Schroth R.J., Lavelle C., Tate R., Bruce S., Billings R.J., Moffatt M.E.K. Prenatal vitamin D and dental caries in infants. Pediatrics. 2014;133:133. doi:10.1542/peds.2013-2215. [PubMed] [CrossRef] [Google Scholar]

46. Singleton R., Day G., Thomas T., Schroth R., Klejka J., Lenaker D., Berner J. Association of maternal Vitamin D deficiency with early childhood caries. J. Dent. Res. 2019;98:549–555. doi:10.1177/0022034519834518. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Hollist B.W., Pittard W.B. Evaluation of the total fetomaternal vitamin d relationships at term: Evidence for racial differences. J. Clin. Endocrinol. Metab. 1984;59:652–657. doi:10.1210/jcem-59-4-652. [PubMed] [CrossRef] [Google Scholar]

48. Karras S.N., Fakhoury H., Muscogiuri G., Grant W.B., van den Ouweland J.M., Colao A.M., Kotsa K. Maternal vitamin D levels during pregnancy and neonatal health: Evidence to date and clinical implications. Ther. Adv. Musculoskelet. Dis. 2016;8:124–135. doi:10.1177/1759720X16656810. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Nørrisgaard P.E., Haubek D., Kühnisch J., Chawes B.L., Stokholm J., Bønnelykke K., Bisgaard H. Association of high-dose vitamin d supplementation during pregnancy with the risk of enamel defects in offspring: A 6-year follow-up of a randomized clinical trial. JAMA Pediatr. 2019;173:924–930. doi:10.1001/jamapediatrics.2019.2545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Reed S.G., Miller C.S., Wagner C.L., Hollis B.W., Lawson A.B. Toward preventing enamel hypoplasia: Modeling maternal and neonatal biomarkers of human calcium homeostasis. Caries Res. 2020;54:55–67. doi:10.1159/000502793. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Reed S.G., Voronca D., Wingate J.S., Murali M., Lawson A.B., Hulsey T.C., Ebeling M.D., Hollis B.W., Wagner C.L. Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: A pilot study. Pediatr. Dent. J. 2017;27:21–28. doi:10.1016/j.pdj.2016.08.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Tanaka K., Hitsumoto S., Miyake Y., Okubo H., Sasaki S., Miyatake N., Arakawa M. Higher vitamin D intake during pregnancy is associated with reduced risk of dental caries in young Japanese children. Ann. Epidemiol. 2015;25:620–625. doi:10.1016/j.annepidem.2015.03.020. [PubMed] [CrossRef] [Google Scholar]

53. Kassebaum N.J., Bernabé E., Dahiya M., Bhandari B., Murray C.J.L., Marcenes W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015;94:650–658. doi:10.1177/0022034515573272. [PubMed] [CrossRef] [Google Scholar]

54. Petersen P.E. World Health Organization global policy for improvement of oral health—World Health Assembly 2007. Int. Dent. J. 2008;58:342–348. doi:10.1111/j.1875-595X.2008.tb00185.x. [PubMed] [CrossRef] [Google Scholar]

55. Selwitz R.H., Ismail A.I., Pitts N.B. Dental caries. Lancet. 2007;369:51–59. doi:10.1016/S0140-6736(07)60031-2. [PubMed] [CrossRef] [Google Scholar]

56. Conrads G., About I. Pathophysiology of dental caries. Monogr. Oral Sci. 2018;27:1–10. [PubMed] [Google Scholar]

57. Hemadi A.S., Huang R., Zhou Y., Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int. J. Oral Sci. 2017;9:e1. doi:10.1038/ijos.2017.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Yildiz G., Ermis R.B., Calapoglu N.S., Celik E.U., Türel G.Y. Gene-environment interactions in the etiology of dental caries. J. Dent. Res. 2016;95:74–79. doi:10.1177/0022034515605281. [PubMed] [CrossRef] [Google Scholar]

59. Rosier B.T., Marsh P.D., Mira A. Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. J. Dent. Res. 2018;97:371–380. doi:10.1177/0022034517742139. [PubMed] [CrossRef] [Google Scholar]

60. Jágr M., Eckhardt A., Pataridis S., Foltán R., Myšák J., Mikšík I. Proteomic analysis of human tooth pulp proteomes—Comparison of caries-resistant and caries-susceptible persons. J. Proteom. 2016;145:127–136. doi:10.1016/j.jprot.2016.04.022. [PubMed] [CrossRef] [Google Scholar]

61. Zhou F., Zhou Y., Shi J. The association between serum 25-hydroxyvitamin D levels and dental caries in US adults. Oral Dis. 2020 doi:10.1111/odi.13360. [PubMed] [CrossRef] [Google Scholar]

62. Herzog K., Scott J.M., Hujoel P., Seminario A.L. Association of Vitamin D and dental caries in children Findings from the National Health and Nutrition Examination Survey, 2005–2006. J. Am. Dent. Assoc. 2016;147:413–420. doi:10.1016/j.adaj.2015.12.013. [PubMed] [CrossRef] [Google Scholar]

63. Kim I.J., Lee H.S., Ju H.J., Na J.Y., Oh H.W. A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children. BMC Oral Health. 2018;18:43. doi:10.1186/s12903-018-0505-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Gupta A., Chhonkar A., Arya V. Comparison of Vitamin D level of children with severe early childhood caries and children with no caries. Int. J. Clin. Pediatr. Dent. 2018;11:199–204. doi:10.5005/jp-journals-10005-1511. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Deane S., Schroth R.J., Sharma A., Rodd C. Combined deficiencies of 25-hydroxyvitamin D and anemia in preschool children with severe early childhood caries: A case-control study. Paediatr. Child Health. 2018;23:e40–e45. doi:10.1093/pch/pxx150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Guizar J.M., Muñoz N., Amador N., Garcia G. Association of alimentary factors and nutritional status with caries in children of leon, Mexico. Oral Health Prev. Dent. 2016;14:563–569. [PubMed] [Google Scholar]

67. Wagner Y., Heinrich-Weltzien R. Evaluation of an interdisciplinary preventive programme for early childhood caries: Findings of a regional German birth cohort study. Clin. Oral Investig. 2016;20:1943–1952. doi:10.1007/s00784-015-1685-z. [PubMed] [CrossRef] [Google Scholar]

68. Schroth R.J., Rabbani R., Loewen G., Moffatt M.E. Vitamin D and dental caries in children. J. Dent. Res. 2016;95:173–179. doi:10.1177/0022034515616335. [PubMed] [CrossRef] [Google Scholar]

69. Wójcik D., Krzewska A., Szalewski L., Pietryka-Michałowska E., Szalewska M., Krzewski S., Pels E., Beń-Skowronek I. Dental caries and Vitamin D 3 in children with growth hormone deficiency. Medicine. 2018;97:e9811. [PMC free article] [PubMed] [Google Scholar]

70. Akinkugbe A.A., Moreno O., Brickhouse T.H. Serum cotinine, vitamin D exposure levels and dental caries experience in U.S. adolescents. Community Dent. Oral Epidemiol. 2019;47:185–192. doi:10.1111/cdoe.12442. [PubMed] [CrossRef] [Google Scholar]

71. Gyll J., Ridell K., Öhlund I., Karlsland Åkeson P., Johansson I., Lif Holgerson P. Vitamin D status and dental caries in healthy Swedish children. Nutr. J. 2018;17:11. doi:10.1186/s12937-018-0318-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Dudding T., Thomas S.J., Duncan K., Lawlor D.A., Timpson N.J. Re-examining the association between Vitamin D and childhood caries. PLoS ONE. 2015;10:e0143769. doi:10.1371/journal.pone.0143769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Kühnisch J., Thiering E., Heinrich-Weltzien R., Hellwig E., Hickel R., Heinrich J. Fluoride/vitamin D tablet supplementation in infants—Effects on dental health after 10 years. Clin. Oral Investig. 2017;21:2283–2290. doi:10.1007/s00784-016-2021-y. [PubMed] [CrossRef] [Google Scholar]

74. Altman H., Steinberg D., Porat Y., Mor A., Fridman D., Friedman M., Bachrach G. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J. Antimicrob. Chemother. 2006;58:198–201. doi:10.1093/jac/dkl181. [PubMed] [CrossRef] [Google Scholar]

75. Grant W.B. A review of the role of solar ultraviolet-B irradiance and vitamin D in reducing risk of dental caries. Dermatoendocrinology. 2011;3:193–198. doi:10.4161/derm.15841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Davidopoulou S., Diza E., Menexes G., Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch. Oral Biol. 2012;57:865–869. doi:10.1016/j.archoralbio.2012.01.008. [PubMed] [CrossRef] [Google Scholar]

77. Phattarataratip E., Olson B., Broffitt B., Qian F., Brogden K.A., Drake D.R., Levy S.M., Banas J.A. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol. Oral Microbiol. 2011;26:187–199. doi:10.1111/j.2041-1014.2011.00607.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Wong J.H., Ye X.J., Ng T.B. Cathelicidins: Peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr. Protein Pept. Sci. 2013;14:504–514. doi:10.2174/13892037113149990067. [PubMed] [CrossRef] [Google Scholar]

79. Colombo N.H., Ribas L.F.F., Pereira J.A., Kreling P.F., Kressirer C.A., Tanner A.C.R., Duque C. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch. Oral Biol. 2016;69:40–46. doi:10.1016/j.archoralbio.2016.05.009. [PubMed] [CrossRef] [Google Scholar]

80. Goeke J.E., Kist S., Schubert S., Hickel R., Huth K.C., Kollmuss M. Sensitivity of caries pathogens to antimicrobial peptides related to caries risk. Clin. Oral Investig. 2018;22:2519–2525. doi:10.1007/s00784-018-2348-7. [PubMed] [CrossRef] [Google Scholar]

81. Chen Z., Yang G., Lu S., Chen D., Fan S., Xu J., Wu B., He J. Design and antimicrobial activities of LL-37 derivatives inhibiting the formation of Streptococcus mutans biofilm. Chem. Biol. Drug Des. 2019;93:1175–1185. doi:10.1111/cbdd.13419. [PubMed] [CrossRef] [Google Scholar]

82. Darveau R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010;8:481–490. doi:10.1038/nrmicro2337. [PubMed] [CrossRef] [Google Scholar]

83. Tonetti M.S., Jepsen S., Jin L., Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017;44:456–462. doi:10.1111/jcpe.12732. [PubMed] [CrossRef] [Google Scholar]

84. Machado V., Botelho J., Amaral A., Proença L., Alves R., Rua J., Cavacas M.A., Delgado A.S., Mendes J.J. Prevalence and extent of chronic periodontitis and its risk factors in a Portuguese subpopulation: A retrospective cross-sectional study and analysis of clinical attachment loss. PeerJ. 2018;6:e5258. doi:10.7717/peerj.5258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Botelho J., Machado V., Proença L., Alves R., Cavacas M.A., Amaro L., Mendes J.J. Study of Periodontal Health in Almada-Seixal (SoPHiAS): A cross-sectional study in the Lisbon Metropolitan Area. Sci. Rep. 2019;9 doi:10.1038/s41598-019-52116-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Buset S.L., Walter C., Friedmann A., Weiger R., Borgnakke W.S., Zitzmann N.U. Are periodontal diseases really silent? A systematic review of their effect on quality of life. J. Clin. Periodontol. 2016;43:333–344. doi:10.1111/jcpe.12517. [PubMed] [CrossRef] [Google Scholar]

87. Botelho J., Machado V., Proença L., Bellini D.H., Chambrone L., Alcoforado G., Mendes J.J. The impact of nonsurgical periodontal treatment on oral health-related quality of life: A systematic review and meta-analysis. Clin. Oral Investig. 2020;24:585–596. doi:10.1007/s00784-019-03188-1. [PubMed] [CrossRef] [Google Scholar]

88. Preshaw P.M., Alba A.L., Herrera D., Jepsen S., Konstantinidis A., Makrilakis K., Taylor R. Periodontitis and diabetes: A two-way relationship Matrix metalloproteinase NHANES National Health and Nutrition Examination Survey. Diabetologia. 2012;55:21–31. doi:10.1007/s00125-011-2342-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Leira Y., Seoane J., Blanco M., Rodríguez-Yáñez M., Takkouche B., Blanco J., Castillo J. Association between periodontitis and ischemic stroke: A systematic review and meta-analysis. Eur. J. Epidemiol. 2017;32:43–53. doi:10.1007/s10654-016-0170-6. [PubMed] [CrossRef] [Google Scholar]

90. Muñoz Aguilera E., Suvan J., Buti J., Czesnikiewicz-Guzik M., Barbosa Ribeiro A., Orlandi M., Guzik T.J., Hingorani A.D., Nart J., D’Aiuto F., et al. Periodontitis is associated with hypertension: A systematic review and meta-analysis. Cardiovasc. Res. 2020;116:28–39. doi:10.1093/cvr/cvz201. [PubMed] [CrossRef] [Google Scholar]

91. Hussain S.B., Botelho J., Machado V., Zehra S.A., Mendes J.J., Ciurtin C., Orlandi M., Aiuto F.D. Is there a bidirectional association between rheumatoid arthritis and periodontitis? A systematic review and meta-analysis. Semin. Arthritis Rheum. 2020 doi:10.1016/j.semarthrit.2020.01.009. [PubMed] [CrossRef] [Google Scholar]

92. Papageorgiou S.N., Hagner M., Nogueira A.V.B., Franke A., Jäger A., Deschner J. Inflammatory bowel disease and oral health: Systematic review and a meta-analysis. J. Clin. Periodontol. 2017;44:382–393. doi:10.1111/jcpe.12698. [PubMed] [CrossRef] [Google Scholar]

93. Botelho J., Machado V., Mascarenhas P., Rua J., Alves R., Cavacas M.A., Delgado A., João Mendes J. Stress, salivary cortisol and periodontitis: A systematic review and meta-analysis of observational studies. Arch. Oral Biol. 2018;96:58–65. doi:10.1016/j.archoralbio.2018.08.016. [PubMed] [CrossRef] [Google Scholar]

94. Machado V., Botelho J., Lopes J., Patrão M., Alves R., Chambrone L., Alcoforado G., Mendes J.J. Periodontitis impact in interleukin-6 serum levels in solid organ transplanted patients: A systematic review and meta-analysis. Diagnostics. 2020;10:184. doi:10.3390/diagnostics10040184. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Manrique-Corredor E.J., Orozco-Beltran D., Lopez-Pineda A., Quesada J.A., Gil-Guillen V.F., Carratala-Munuera C. Maternal periodontitis and preterm birth: Systematic review and meta-analysis. Community Dent. Oral Epidemiol. 2019;47:243–251. doi:10.1111/cdoe.12450. [PubMed] [CrossRef] [Google Scholar]

96. Najeeb S., Zafar M.S., Khurshid Z., Zohaib S., Almas K. The role of nutrition in periodontal health: An update. Nutrients. 2016;8:530. doi:10.3390/nu8090530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Jagelavičienė E., Vaitkevičienė I., Šilingaitė D., Šinkūnaitė E., Daugėlaitė G. The relationship between vitamin D and periodontal pathology. Medicina. 2018;54:45. doi:10.3390/medicina54030045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Garcia M.N., Hildebolt C.F., Miley D.D., Dixon D.A., Couture R.A., Anderson Spearie C.L., Langenwalter E.M., Shannon W.D., Deych E., Mueller C., et al. One-year effects of Vitamin D and calcium supplementation on chronic periodontitis. J. Periodontol. 2011;82:25–32. doi:10.1902/jop.2010.100207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Grant W.B., Boucher B.J. Are hill’s criteria for causality satisfied for vitamin D and periodontal disease? Dermatoendocrinology. 2010;2:30–36. doi:10.4161/derm.2.1.12488. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Stein S.H., Livada R., Tipton D.A. Re-evaluating the role of vitamin D in the periodontium. J. Periodontal Res. 2014;49:545–553. doi:10.1111/jre.12149. [PubMed] [CrossRef] [Google Scholar]

101. Anbarcioglu E., Kirtiloglu T., Öztürk A., Kolbakir F., Acıkgöz G., Colak R. Vitamin D deficiency in patients with aggressive periodontitis. Oral Dis. 2019;25:242–249. doi:10.1111/odi.12968. [PubMed] [CrossRef] [Google Scholar]

102. Agrawal A.A., Kolte A.P., Kolte R.A., Chari S., Gupta M., Pakhmode R. Evaluation and comparison of serum vitamin D and calcium levels in periodontally healthy, chronic gingivitis and chronic periodontitis in patients with and without diabetes mellitus–a cross-sectional study. Acta Odontol. Scand. 2019;77:592–599. doi:10.1080/00016357.2019.1623910. [PubMed] [CrossRef] [Google Scholar]

103. Ebersole J.L., Lambert J., Bush H., Huja P.E., Basu A. Serum nutrient levels and aging effects on periodontitis. Nutrients. 2018;10:1986. doi:10.3390/nu10121986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Isola G., Alibrandi A., Rapisarda E., Matarese G., Williams R.C., Leonardi R. Association of vitamin D in patients with periodontitis: A cross-sectional study. J. Periodontal Res. 2020:1–11. doi:10.1111/jre.12746. [PubMed] [CrossRef] [Google Scholar]

105. Ketharanathan V., Torgersen G.R., Petrovski B.É., Preus H.R. Radiographic alveolar bone level and levels of serum 25-OH-Vitamin D 3 in ethnic Norwegian and Tamil periodontitis patients and their periodontally healthy controls. BMC Oral Health. 2019;19:83. doi:10.1186/s12903-019-0769-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Costantini E., Sinjari B., Piscopo F., Porreca A., Reale M., Caputi S., Murmura G. Evaluation of salivary cytokines and Vitamin D levels in periodontopathic patients. Int. J. Mol. Sci. 2020;21:2669. doi:10.3390/ijms21082669. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Zhan Y., Samietz S., Holtfreter B., Hannemann A., Meisel P., Nauck M., Volzke H., Wallaschofski H., Dietrich T., Kocher T., et al. Prospective study of serum 25-hydroxy vitamin d and tooth loss. J. Dent. Res. 2014;93:639–644. doi:10.1177/0022034514534985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Millen A.E., Hovey K.M., LaMonte M.J., Swanson M., Andrews C.A., Kluczynski M.A., Genco R.J., Wactawski-Wende J. Plasma 25-Hydroxyvitamin D concentrations and periodontal disease in postmenopausal women. J. Periodontol. 2013;84:1243–1256. doi:10.1902/jop.2012.120445. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Antonoglou G.N., Knuuttila M., Niemelä O., Raunio T., Karttunen R., Vainio O., Hedberg P., Ylöstalo P., Tervonen T. Low serum level of 1,25(OH)2D is associated with chronic periodontitis. J. Periodontal Res. 2015;50:274–280. doi:10.1111/jre.12207. [PubMed] [CrossRef] [Google Scholar]

110. Meghil M.M., Hutchens L., Raed A., Multani N.A., Rajendran M., Zhu H., Looney S., Elashiry M., Arce R.M., Peaco*ck M.E., et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Dis. 2019;25:1403–1413. doi:10.1111/odi.13097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Taskan M., Gevrek F. PPAR-γ, RXR, VDR, and COX-2 expressions in gingival tissue samples of healthy individuals, periodontitis and peri-implantitis patients MM. Niger. J. Clin. Pract. 2019;22:46–53. [PubMed] [Google Scholar]

112. Hu X., Niu L., Ma C., Huang Y., Yang X., Shi Y., Pan C., Liu J., Wang H., Li Q., et al. Calcitriol decreases live Porphyromonas gingivalis internalized into epithelial cells and monocytes by promoting autophagy. J. Periodontol. 2019 doi:10.1002/JPER.19-0510. [PubMed] [CrossRef] [Google Scholar]

113. Han J., Cheng C., Zhu Z., Lin M., Zhang D.X., Wang Z.M., Wang S. Vitamin D reduces the serum levels of inflammatory cytokines in rat models of periodontitis and chronic obstructive pulmonary disease. J. Oral Sci. 2019;61:53–60. doi:10.2334/josnusd.17-0357. [PubMed] [CrossRef] [Google Scholar]

114. Li H., Zhong X., Li W., Wang Q. Effects of 1,25-dihydroxyvitamin on experimental periodontitis and ahr/nf-κb/nlrp3 inflammasome pathway in a mouse model. J. Appl. Oral Sci. 2019;27:1–10. doi:10.1590/1678-7757-2018-0713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Oh C., Kim H.J., Kim H.M. Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α J. Periodontal Implant. Sci. 2019;49:270–286. doi:10.5051/jpis.2019.49.5.270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Wang Q., Zhou X., Zhang P., Zhao P., Nie L., Ji N., Ding Y., Wang Q. 25-Hydroxyvitamin D3 positively regulates periodontal inflammaging via SOCS3/STAT signaling in diabetic mice. Steroids. 2020;156:108570. doi:10.1016/j.steroids.2019.108570. [PubMed] [CrossRef] [Google Scholar]

117. Li H., Li W., Wang Q. 1,25-dihydroxyvitamin D3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells. BMC oral health. 2019;19:1–9. doi:10.1186/s12903-019-0935-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Bi C.S., Wang J., Qu H.L., Li X., Tian B.M., Ge S., Chen F.M. Calcitriol suppresses lipopolysaccharide-induced alveolar bone damage in rats by regulating T helper cell subset polarization. J. Periodontal Res. 2019;54:612–623. doi:10.1111/jre.12661. [PubMed] [CrossRef] [Google Scholar]

119. Hong H., Hong A., Wang C., Huang E., Chiang C. Calcitriol exerts a mineralization-inductive effect comparable to that of vitamin C in cultured human periodontium cells. Am. J. Transl. Res. 2019;11:2304–2316. [PMC free article] [PubMed] [Google Scholar]

120. Anand A., Singh S., Sonkar A.A., Husain N., Singh K.R., Singh S., Kushwaha J.K. Expression of Vitamin D receptor and Vitamin D status in patients with oral neoplasms and effect of Vitamin D supplementation on quality of life in advanced cancer treatment. Wspolczesna Onkol. 2017;21:145–151. doi:10.5114/wo.2017.68623. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Yu X., Zong X., Pan Y. Associations between vitamin D receptor genetic variants and periodontitis: A meta-analysis. Acta Odontol. Scand. 2019;77:484–494. doi:10.1080/00016357.2019.1597160. [PubMed] [CrossRef] [Google Scholar]

122. Wan Q.S., Li L., Yang S.K., Liu Z.L., Song N. Role of Vitamin D receptor gene polymorphisms on the susceptibility to periodontitis: A meta-analysis of a controversial issue. Genet. Test. Mol. Biomark. 2019;23:618–633. doi:10.1089/gtmb.2019.0021. [PubMed] [CrossRef] [Google Scholar]

123. Gao W., Tang H., Wang D., Zhou X., Song Y., Wang Z. Effect of short-term vitamin D supplementation after nonsurgical periodontal treatment: A randomized, double-masked, placebo-controlled clinical trial. J. Periodontal Res. 2020:1–9. doi:10.1111/jre.12719. [PubMed] [CrossRef] [Google Scholar]

124. Patil V., Mali R., Moghe A. Evaluation and comparison of Vitamin D receptors in periodontal ligament tissue of Vitamin D-deficient chronic periodontitis patients before and after supplementation of Vitamin D3. J. Indian Soc. Periodontol. 2019;23:100–105. doi:10.4103/jisp.jisp_173_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Bashutski J.D., Eber R.M., Kinney J.S., Benavides E., Maitra S., Braun T.M., Giannobile W.V., McCauley L.K. The impact of vitamin D status on periodontal surgery outcomes. J. Dent. Res. 2011;90:1007–1012. doi:10.1177/0022034511407771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Boggess K.A., Espinola J.A., Moss K., Beck J., Offenbacher S., Camargo C.A., Jr. Vitamin D status and periodontal disease among pregnant women. J. Periodontol. 2011;82:195–200. doi:10.1902/jop.2010.100384. [PubMed] [CrossRef] [Google Scholar]

127. Sablok A., Batra A., Thariani K., Batra A., Bharti R., Aggarwal A.R., Kabi B.C., Chellani H. Supplementation of Vitamin D in pregnancy and its correlation with feto-maternal outcome. Clin. Endocrinol. (Oxf.) 2015;83:536–541. doi:10.1111/cen.12751. [PubMed] [CrossRef] [Google Scholar]

128. Khan F.R., Ahmad T., Hussain R., Bhutta Z.A. A randomized controlled trial of oral Vitamin D supplementation in pregnancy to improve maternal periodontal health and birth weight. J. Int. Oral Health. 2016;8:657–665. [Google Scholar]

129. Khan F., Ahmad T., Hussain R., Bhutta Z. Relationship among Hypovitaminosis D, maternal periodontal disease, and low birth weight. J. Coll. Physicians Surg. Pak. 2018;28:36–39. doi:10.29271/jcpsp.2018.01.36. [PubMed] [CrossRef] [Google Scholar]

130. Sabharwal A., Gomes-Filho I.S., Stellrecht E., Scannapieco F.A. Role of periodontal therapy in management of common complex systemic diseases and conditions: An update. Periodontology 2000. 2018;78:212–226. doi:10.1111/prd.12226. [PubMed] [CrossRef] [Google Scholar]

131. Iheozor-Ejiofor Z., Middleton P., Esposito M., Glenny A.M. Treating periodontal disease for preventing adverse birth outcomes in pregnant women. Cochrane Database Syst. Rev. 2017;2017:CD005297. doi:10.1002/14651858.CD005297.pub3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Albandar J.M., Susin C., Hughes F.J. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018;45:S171–S189. doi:10.1111/jcpe.12947. [PubMed] [CrossRef] [Google Scholar]

133. Wei S.Q., Qi H.P., Luo Z.C., Fraser W.D. Maternal vitamin D status and adverse pregnancy outcomes: A systematic review and meta-analysis. J. Matern. Neonatal Med. 2013;26:889–899. doi:10.3109/14767058.2013.765849. [PubMed] [CrossRef] [Google Scholar]

134. Ziuchkovski J.P., Fields H.W., Johnston W.M., Lindsey D.T. Assessment of perceived orthodontic appliance attractiveness. Am. J. Orthod. Dentofac. Orthop. 2008;133:68–78. doi:10.1016/j.ajodo.2006.07.025. [PubMed] [CrossRef] [Google Scholar]

135. Sarver D.M. Interactions of hard tissues, soft tissues, and growth over time, and their impact on orthodontic diagnosis and treatment planning. Am. J. Orthod. Dentofac. Orthop. 2015;148:380–386. doi:10.1016/j.ajodo.2015.04.030. [PubMed] [CrossRef] [Google Scholar]

136. Kawakami M., Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J. Bone Miner. Metab. 2004;22:541–546. doi:10.1007/s00774-004-0521-3. [PubMed] [CrossRef] [Google Scholar]

137. Anderson P.H. Vitamin D activity and metabolism in bone. Curr. Osteoporos. Rep. 2017;15:443–449. doi:10.1007/s11914-017-0394-8. [PubMed] [CrossRef] [Google Scholar]

138. van Driel M., van Leeuwen J.P.T.M. Vitamin D endocrinology of bone mineralization. Mol. Cell. Endocrinol. 2017;453:46–51. doi:10.1016/j.mce.2017.06.008. [PubMed] [CrossRef] [Google Scholar]

139. Meikle M.C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after carl sandstedt. Eur. J. Orthod. 2006;28:221–240. doi:10.1093/ejo/cjl001. [PubMed] [CrossRef] [Google Scholar]

140. Davidovitch Z., Finkelson M.D., Steigman S., Shanfeld J.L., Montgomery P.C., Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 1980;77:14–32. doi:10.1016/0002-9416(80)90221-3. [PubMed] [CrossRef] [Google Scholar]

141. Yamasaki K., Shibata Y., Imai S., Tani Y., Shibasaki Y., f*ckuhara T. Clinical application of prostaglandin E 1 (PGE 1 ) upon orthodontic tooth movement. Am. J. Orthod. 1984;85:508–518. doi:10.1016/0002-9416(84)90091-5. [PubMed] [CrossRef] [Google Scholar]

142. Stark T.N.I., Sinclair P.M. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 1987;91:91–104. doi:10.1016/0889-5406(87)90465-3. [PubMed] [CrossRef] [Google Scholar]

143. Boyce R.W., Weisbrode S.E. Histogenesis of hyperosteoidosis in 1,25(OH)2D3-treated rats fed high levels of dietary calcium. Bone. 1985;6:105–112. doi:10.1016/8756-3282(85)90314-X. [PubMed] [CrossRef] [Google Scholar]

144. Kale S., Kocadereli I., Atilla P., Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 2004;125:607–614. doi:10.1016/j.ajodo.2003.06.002. [PubMed] [CrossRef] [Google Scholar]

145. Collins M.K., Sinclair P.M. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 1988;94:278–284. doi:10.1016/0889-5406(88)90052-2. [PubMed] [CrossRef] [Google Scholar]

146. Lipworth L., Rossi M., McLaughlin J.K., Negri E., Talamini R., Levi F., Franceschi S., La Vecchia C. Dietary vitamin D and cancers of the oral cavity and esophagus. Ann. Oncol. 2009;20:1576–1581. doi:10.1093/annonc/mdp036. [PubMed] [CrossRef] [Google Scholar]

147. Lehrer S., Montazem A., Ramanathan L., Pessin-Minsley M., Pfail J., Stock R.G., Kogan R. Normal serum bone markers in bisphosphonate-induced osteonecrosis of the jaws. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008;106:389–391. doi:10.1016/j.tripleo.2008.01.033. [PubMed] [CrossRef] [Google Scholar]

148. Bedogni A., Bettini G., Bedogni G., Basso D., Gatti D., Valisena S., Brunello A., Sorio M., Berno T., Giannini S., et al. Is vitamin D deficiency a risk factor for osteonecrosis of the jaw in patients with cancer? A matched case–control study. J. Cranio-Maxillofac. Surg. 2019;47:1203–1208. doi:10.1016/j.jcms.2019.03.007. [PubMed] [CrossRef] [Google Scholar]

149. Heim N., Warwas F.B., Wilms C.T., Reich R.H., Martini M. Vitamin D (25-OHD) deficiency may increase the prevalence of medication-related osteonecrosis of the jaw. J. Cranio-Maxillofac. Surg. 2017;45:2068–2074. doi:10.1016/j.jcms.2017.09.015. [PubMed] [CrossRef] [Google Scholar]

150. Lowe L.C., Guy M., Mansi J.L., Peckitt C., Bliss J., Wilson R.G., Colston K.W. Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population. Eur. J. Cancer. 2005;41:1164–1169. doi:10.1016/j.ejca.2005.01.017. [PubMed] [CrossRef] [Google Scholar]

151. Badros A., Goloubeva O., Evangelos T., Todd M., Maria R.B., Elizabeth S. Prevalence and significance of vitamin D deficiency in multiple myeloma patients. Br. J. Haematol. 2008;142:492–494. doi:10.1111/j.1365-2141.2008.07214.x. [PubMed] [CrossRef] [Google Scholar]

152. Sugimoto T., Matsumoto T., Hosoi T., Miki T., Gorai I., Yoshikawa H., Tanaka Y., Tanaka S., f*ckunaga M., Sone T., et al. Three-year denosumab treatment in postmenopausal Japanese women and men with osteoporosis: Results from a 1-year open-label extension of the Denosumab Fracture Intervention Randomized Placebo Controlled Trial (DIRECT) Osteoporos. Int. 2014;26:765–774. doi:10.1007/s00198-014-2964-2. [PubMed] [CrossRef] [Google Scholar]

153. Demircan S., Isler S. Changes in serological bone turnover markers in bisphosphonate induced osteonecrosis of the jaws: A case control study. Niger. J. Clin. Pract. 2020;23:154–158. [PubMed] [Google Scholar]

154. Danila M.I., Outman R.C., Rahn E.J., Mudano A.S., Redden D.T., Li P., Allison J.J., Anderson F.A., Wyman A., Greenspan S.L., et al. Evaluation of a multimodal, direct-to-patient educational intervention targeting barriers to osteoporosis care: A randomized clinical trial. J. Bone Miner. Res. 2018;33:763–772. doi:10.1002/jbmr.3395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Vitamin D Deficiency and Oral Health: A Comprehensive Review (2024)

FAQs

Vitamin D Deficiency and Oral Health: A Comprehensive Review? ›

Further, vitamin D concentrations were associated with higher periodontal destruction, severe periodontitis stages and higher tooth loss [30,107,108,109]. In otherwise healthy patients (CVD and diabetes mellitus), lower levels of Vitamin D were also associated when periodontitis was diagnosed [102,104].

How does vitamin D deficiency affect oral health? ›

Vitamin D deficiency or insufficiency can affect both tooth enamel and gum health. Low vitamin D levels in children can affect tooth development, causing teeth to be weaker in adulthood and more prone to cavities or chipping. In adults, low vitamin D status can lead to gingivitis and periodontal disease.

How much vitamin D to recover from deficiency? ›

Management of Vitamin D Deficiency

Initial supplementation for 8 weeks with Vitamin D3, either 6,000 IU daily or 50,000 IU weekly, can be considered. [13] Once the serum 25-hydroxyvitamin D level exceeds 30 ng/mL, a daily maintenance dose of 1,000 to 2,000 IU is recommended.

How do you feel when your vitamin D is extremely low? ›

Symptoms when vitamin D is low

Most people with vitamin D deficiency are asymptomatic. However, if you're exhausted, your bones hurt, you have muscle weakness or mood changes, that's an indication that something may be abnormal with your body.

Can vitamin D deficiency cause mouth sores? ›

Tooth decay, periodontitis, oral cancer, oral candidiasis, oral lichen planus, and recurring aphthous ulcers are manifested with the symptoms of sore mouth and they have all been linked to vitamin D deficiency.

What's the worst that can happen with low vitamin D? ›

When vitamin D levels are low and the body isn't able to properly absorb calcium and phosphorus, there is an increased risk of bone pain, bone fractures, muscle pain, and muscle weakness. In older adults, severe vitamin D deficiency (levels less than 10 ng/mL) may also contribute to an increased risk of falls.

What are the side effects of vitamin D in the mouth? ›

Some side effects of taking too much vitamin D include weakness, dry mouth, nausea, vomiting, and others. Taking vitamin D for long periods of time in doses higher than 4000 IU (100 mcg) daily is possibly unsafe and may cause very high levels of calcium in the blood.

How long does it take to feel normal after vitamin D deficiency? ›

How long it takes you to recover depends on how severe your deficiency is. However, it generally takes about 6-8 weeks of supplementation for your vitamin D levels to go back into the normal range.

What depletes vitamin D from the body? ›

You can become deficient in vitamin D for different reasons: You don't get enough vitamin D in your diet. You don't absorb enough vitamin D from food (a malabsorption problem) You don't get enough exposure to sunlight.

How can I raise my vitamin D level quickly? ›

Here are three ways to increase your intake:
  1. Eat foods high in vitamin D, like fish or fortified breakfast foods (milk, cereals and orange juice).
  2. Get vitamin D from moderate sunlight exposure each day.
  3. Take a vitamin D3 supplement or cod liver oil.
Jul 19, 2022

Does low vitamin D cause weight gain? ›

A vitamin D deficiency is unlikely to cause weight gain. However, it may cause other health problems or unpleasant symptoms, which are worth avoiding. You can maintain adequate vitamin D levels through a combination of limited sun exposure, a vitamin-D-rich diet, and taking vitamin D supplements.

How low is too low for vitamin D? ›

Levels of 50 nmol/L (20 ng/mL) or above are adequate for most people for bone and overall health. Levels below 30 nmol/L (12 ng/mL) are too low and might weaken your bones and affect your health. Levels above 125 nmol/L (50 ng/mL) are too high and might cause health problems.

What medication do you take for vitamin D deficiency? ›

Colecalciferol Brand names: BetterYou, Desunin, Stexerol, Strivit.

Can low vitamin D affect your teeth? ›

Lack of vitamin D can lead to dental caries, and weak or brittle teeth that easily break, chip, and crack. A controlled study made up of 2,827 children found a reduction of 47% in cavities of the children who received vitamin D supplements.

What STD causes vitamin D deficiency? ›

People living with HIV may have an increased risk of vitamin D deficiency. Research has found that up to 100% of those living with HIV-1, which is a type of HIV, have insufficient vitamin D levels.

How do you know if you have a vitamin deficiency in your mouth? ›

:
Deficient NutrientEffect on oral structures
Vitamin B1(Thiamine)Cracked lips, Angular cheilosis
Vitamin B2 ( Riboflavin) Vitamin B3 (Niacin)Inflammation of the tongue, Angular cheilosis Ulcerative gingivitis
Vitamin B6Periodontal disease, Anemia Sore tongue Burning sensation in the oral cavity.
2 more rows

How does vitamin deficiency affect the mouth? ›

Findings indicate that shortages in vitamins A and D lead to enamel issues and a higher susceptibility to dental diseases, vitamin E assists in treating oral mucositis, and vitamin K is essential for blood clotting in dental surgeries.

Can low vitamin D make your teeth hurt? ›

Dental caries – Better known as cavities, dental caries are painful yet common dental problems—potentially made worse by low vitamin D levels. Aside from leaving you with sore teeth, dental caries may also lead to further infection if left untreated.

What is the role of vitamin D in periodontal health? ›

The data shows vitamin D's association with oral health maintenance. Along with its action on bone metabolism, it has extended function, which provides for its action as an anti-inflammatory agent and production of anti-microbial peptides, which help maintain oral health.

Can vitamin D deficiency affect your tongue? ›

Studies have found that vitamin D deficiency can lead to burning mouth syndrome, which is a painful condition that leads to a burning, scalding, or tingling feeling in the mouth, especially on the tongue.

References

Top Articles
Latest Posts
Article information

Author: Gregorio Kreiger

Last Updated:

Views: 6364

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Gregorio Kreiger

Birthday: 1994-12-18

Address: 89212 Tracey Ramp, Sunside, MT 08453-0951

Phone: +9014805370218

Job: Customer Designer

Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking

Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.